
Modern Assembly Language Programming
with the

ARM processor
Chapter 6: Abstract Data Types

Contents

1 Introduction

2 Image

3 Word Frequency Counts

4 Therac-25

ADT

An Abstract Data Type (ADT) is composed of:

data and

the operations that work on that data.

Separate the interface from the implementation!

Object Oriented Programming (OOP) is a related concept with similar goals.

C provides support for ADTs and allows the implementation to be done in
assembly.

C++ provides support for objects and allows the implementation to be done in
assembly (but you need to know a bit more about the compiler).

Information Hiding

Hide the physical storage layout for data.

If the data structure changes, it only affects a small subset of the total program

Unit Testing

Rapid Prototyping

Standardization

Debugging

Code Reuse

Independent Development

Larger Projects

Higher Quality

ADT Interface in C

1 #ifndef IMAGE_H
2 #define IMAGE_H
3 #include <stdio.h>
4

5 typedef unsigned char pval;
6

7 struct imageStruct;
8

9 typedef struct imageStruct Image;
10

11 Image *allocateImage();
12 void freeImage(Image *image);
13

14 int readImage(FILE *f, Image *image);
15 int writeImage(FILE *f, Image *image);
16

17 int setPixelRGB(Image *image,int row,int col,pval r,pval g,pval b);
18 int setPixelGray(Image *image, int row, int col, pval v);
19

20 pixel getPixelRGB(Image *image, int row, int col);
21 pval getPixelGray(Image *image, int row, int col);
22

23 #endif

ADT Private Declarations

A separate header, only available to the Image implementation files:

1 #ifndef IMAGE_PRIVATE_H
2 #define IMAGE_PRIVATE_H
3 #include <image.h>
4

5 typedef struct {
6 pval r,g,b;
7 } Pixel;
8

9 struct imageStruct;
10 int rows; // number of rows in the image
11 int cols; // number of columns in the image
12 Pixel *pixels; // array of pixel data
13 };
14 #endif

ADT Private Declarations

imagedefs.S

1 @@@ Definitions for pixel and image data structures
2

3 @@ pixel
4 .equ p_red, #0 @ offset to red value
5 .equ p_green, #1 @ offset to green value
6 .equ p_blue, #2 @ offset to blue value
7 .equ p_size, #3 @ size of the pixel data structure
8

9 @@ image
10 .equ i_rows, #0 @ offset to number of rows
11 .equ i_cols, #4 @ offset to number of columns
12 .equ i_pixels,#8 @ offset to pointer to image data
13 .equ i_size, #12 @ size of the image data structure

ADT Implementation in Assembly

1 .include "imagedefs.S" @ include data layout
2 .text
3 /* Implementation of
4 int setPixelRGB(Image *image,int row,int col,pval r,pval g,pval b);
5 */
6 .global setPixelRGB
7 setPixelRGB:
8 stmfd sp!,{r4,r5} @ We will need some registers
9 @@ Calculate address of desired pixel

10 ldr r4,[r0,#i_cols] @ get # colummns in image
11 mla r4,r4,r1,r2 @ calculate offset to desired row
12 @ and add offset to desired column
13 mov r5,#p_size @ load size of a pixel
14 mul r4,r4,r5 @ get offset to desired pixel in bytes
15 ldr r5,[r0,#i_pixels]@ get pointer to the pixel array
16 add r0,r4,r5 @ add offset to desired pixel
17 @@ Set the rgb fields in the pixel
18 ldr r4,[sp,#8] @ load g from stack
19 ldr r5,[sp,#12] @ load b from stack
20 strb r3,[r0,#p_red] @ store r,g,b in pixel struct
21 strb r4,[r0,#p_blue]
22 strb r5,[r0,#p_green]
23 ldmfd sp!,{r4,r5}
24 mov pc,lr

Faster ADT Implementation in Assembly
We know that a pixel is three bytes, so replace the multiply with a shift/add operation.

1 .include "imagedefs.S" @ include data layout
2 .text
3 /* Implementation of
4 int setPixelRGB(Image *image,int row,int col,pval r,pval g,pval b);
5 */
6 .global setPixelRGB
7 setPixelRGB:
8 stmfd sp!,{r4,r5} @ We will need some registers
9 @@ Calculate address of desired pixel

10 ldr r4,[r0,#i_cols] @ get # colummns in image
11 mla r4,r4,r1,r2 @ calculate offset to desired row
12 @ and add offset to desired column
13 add r4,r4,r4,lsl #1 @ multiply by 3
14 ldr r5,[r0,#i_pixels]@ get pointer to the pixel array
15 add r0,r4,r5 @ add offset to desired pixel
16 @@ Set the rgb fields in the pixel
17 ldr r4,[sp,#8] @ load g from stack
18 ldr r5,[sp,#12] @ load b from stack
19 strb r3,[r0,#p_red] @ store r,g,b in pixel struct
20 strb r4,[r0,#p_blue]
21 strb r5,[r0,#p_green]
22 ldmfd sp!,{r4,r5}
23 mov pc,lr

Word Frequency Counts

Counting the frequency of words in written text has several uses.

Digital forensics: provide evidence as to the author of written communications.

Document Classification: suggest similar books or help with sorting documents
for storage and access.

Many ways to implement this ADT!

Linked List

Binary Tree

Trie

. . .

Wordlist Interface in C

1 #ifndef LIST_H
2 #define LIST_H
3

4 /* Define an opaque type, named wordlist */
5 typedef struct wlist wordlist;
6

7 /* wl_alloc allocates and initializes a new word list. */
8 wordlist* wl_alloc();
9

10 /* wl_free frees all the storage used by a wordlist */
11 void wl_free(wordlist* wl);
12

13 /* wl_increment adds one to the count of the given word. */
14 /* If the word is not in the list, then it is added with */
15 /* a count of one. */
16 void wl_increment(wordlist *list, char *word);
17

18 /* wl_print prints a table showing the number */
19 /* of occurrences for each word, followed by the word. */
20 void wl_print(wordlist *list);
21

22 /* wl_print_numerical prints a table showing the number */
23 /* of occurrences for each word, followed by the word, */
24 /* sorted in reverse order of occurence. */
25 void wl_print_numerical(wordlist *list);
26

27 #endif

Wordlist Private Declarations
C Data structures:

1 /* The wordlistnode type is a linked list of words and */
2 /* the number of times each word has occurred. */
3 typedef struct wlist_node{
4 char *word;
5 int count;
6 struct wlist_node *next;
7 }wordlistnode;
8

9 /* The wordlist type holds a pointer to the linked list */
10 /* and keeps track of the number of words in the list */
11 typedef struct wlist{
12 int nwords;
13 wordlistnode *head;
14 }wordlist;

Assembly definition:

1 @@@ Definitions for the wordlistnode type
2 .equ wln_word,0 @ word field
3 .equ wln_count,4 @ count filed
4 .equ wln_next,8 @ next field
5 .equ wln_size,12 @ sizeof(wordlistnode)
6 @@@ Definitions for the wordlist type
7 .equ wl_nwords,0 @ number of words in list
8 .equ wl_head,4 @ head of linked list
9 .equ wl_size,8 @ sizeof(wordlist)

Problems with Wordlist Implementation

Linked List:

Inserting or updating an item in the list requires n
2 comparisons on average to

find the insertion point. It is an O(n) algorithm. It is very slow for large text
inputs.

Re-sorting the list by frequency is also very slow.

Binary Tree?

Inserting or updating an item in the tree requires log2 n comparisons on average.
It is an O(logn) algorithm.

It is much faster than a linked list.

Worst case, there are about 1,000,000 words in the English language. 500,000
comparisons for linked list versus 19.9 comparisons for tree. Speedup of ≈ 25125.

Problems with Wordlist Tree-based Implementation

Re-sorting the list by frequency could still be slow.

Solution: Add an index, then sort the index with quicksort!

The index is just an array of pointers; one for each node in the tree.

Binary Tree of Word Frequencies

word

count

left

right

left

word

count

right

word

count

left

right

word

count

left

right

left

word

count

right

left

word

count

right

left

word

count

right

ape

10

cat

3

dog

9

pig

4

fox

23

bat

4

cow

1

Binary Tree of Word Frequencies with Index
The index was initialized using an in-order traversal of the tree.

word

count

left

right

left

word

count

right

word

count

left

right

word

count

left

right

left

word

count

right

left

word

count

right

left

word

count

right

ape

10

cat

3

dog

9

pig

4

fox

23

bat

4

cow

1

Index

Binary Tree of Word Frequencies with Index
The index was sorted using a quicksort.

word

count

left

right

left

word

count

right

word

count

left

right

word

count

left

right

left

word

count

right

left

word

count

right

left

word

count

right

ape

10

cat

3

dog

9

pig

4

fox

23

bat

4

cow

1

Sorted Index

Wordlist Private Declarations: Tree Version

These changes are not visible to any program using this ADT.

C Data structures:

1 /* The wordlistnode type is a binary tree of words and */
2 /* the number of times each word has occurred. */
3 typedef struct wlist_node{
4 char *word;
5 int count;
6 struct wlist_node *left, *right;
7 int height;
8 }wordlistnode;

Assembly definition:

1 @@@ Definitions for the wordlistnode type
2 .equ wln_word,0 @ word field
3 .equ wln_count,4 @ count field
4 .equ wln_left,8 @ left child pointer
5 .equ wln_left,12 @ right child pointer
6 .equ wln_height,16 @ height of this node
7 .equ wln_size,20 @ sizeof(wordlistnode)

Printing in Order of Frequency part 1

1 @@@ --
2 @@@ wl_print_numerical prints a table showing the number
3 @@@ of occurrences for each word, followed by the word,
4 @@@ sorted in reverse order of occurence.
5 .global wl_print_numerical
6 wl_print_numerical:
7 stmfd sp!,{r4-r6,lr} @ save registers
8 mov r4,r0 @ copy original pointer
9 ldr r5,[r0,#wl_nwords]@ load nwords

10 lsl r0,r5,#2 @ multiply by four (size of pointer)
11 bl malloc @ allocate storage for the index
12 cmp r0,#0 @ check return value
13 bne malloc_ok
14 ldr r0,=failstr @ load pointer to string
15 bl printf
16 mov r0,#1
17 bl exit @ exit(1)
18 malloc_ok:

Printing in Order of Frequency part 2

1 malloc_ok:
2 mov r6,r0 @ save pointer to array
3 ldr r1,[r4,#wl_head]@ get pointer to tree
4 bl getptrs @ fill in the pointers
5 mov r0,r6 @ get pointer to array
6 add r1,r0,r5,lsl #2 @ get pointer to end of array
7 sub r1,r1,#4
8 bl wl_quicksort @ re-sort the array of pointers
9 @@ Print the word frequency list.

10 mov r4,#0 @ do a for loop
11 loop: cmp r4,r5
12 bge done
13 ldr r0,=fmtstr
14 ldr r3,[r6,r4,lsl #2] @ get next pointer
15 add r4,r4,#1
16 ldr r1,[r3,#wln_count]@load count
17 ldr r2,[r3,#wln_word] @load ptr to word
18 bl printf
19 b loop
20 done: ldmfd sp!,{r4-r6,pc} @ restore & return

Initializing the Array of Pointers (the index) part 2

1 @@@ --
2 @@@ wordlistnode **getptrs(wordlistnode *ptrs[],wordlistnode *node)
3 @@@ this function recursively traverses the tree, filling in the
4 @@@ array of pointers.
5 @@@ r0 is incremented as each pointer is stored, so it returns
6 @@@ a pointer to the next pointer in the array that needs to
7 @@@ be set.
8 getptrs:
9 cmp r1,#NULL @ if node == NULL

10 moveq pc,lr @ return immediately
11 stmfd sp!,{r4,lr}
12 mov r4,r1 @ save address of current node
13 ldr r1,[r4,#wln_left] @ get ptr to left child
14 bl getptrs @ process left child
15 str r4,[r0],#4 @ Store address of current node
16 ldr r1,[r4,#wln_right]@ get ptr to right child
17 bl getptrs @ process right child
18 ldmfd sp!,{r4,pc}

Quicksort on Array of Pointers (the index) in C

1 wl_quicksort(wordlistnode **left,wordlistnode **right)
2 {
3 wordlistnode **first=left, **last=right;
4 wordlistnode *tmp;
5 int pivot;
6 if(left < right)
7 {
8 pivot=(*left)->count;
9 do{

10 while((left <= right) && ((*left)->count > pivot))
11 left++;
12 while((left <= right) && ((*right)->count < pivot))
13 right--;
14 if(left <= right)
15 {
16 tmp = *left;
17 *left = *right;
18 *right = tmp;
19 left++;
20 right--;
21 }
22 }while(left<=right);
23 wl_quicksort(first,right);
24 wl_quicksort(left,last);
25 }
26 }

Quicksort on Array of Pointers (the index) part 1

1 @@@ --
2 @@@ function wl_quicksort(wln **left,wln **right) quicksorts
3 @@@ the array of pointers in order of the word counts
4 wl_quicksort:
5 cmp r0,r1
6 movge pc,lr @ return if length<=1
7 stmfd sp!,{r4-r7,lr}
8 ldr r12,[r0] @ use count of first item as
9 ldr r12,[r12,#wln_count] @ pivot value in r12

10 mov r4,r0 @ copy current left
11 mov r5,r1 @ copy current right
12 mov r6,r0 @ original left(first)
13 mov r7,r1 @ original right(last)
14 loopa: cmp r4,r5 @ while ((left <= right) &&
15 bgt finale
16 ldr r0,[r4] @ ((*left)->count > pivot))
17 ldr r1,[r0,#wln_count]
18 cmp r1,r12
19 ble loopb
20 add r4,r4,#4 @ increment left
21 b loopa

Quicksort on Array of Pointers (the index) part 2

1 loopb: cmp r4,r5 @ while left <= right &&
2 bgt finale
3 ldr r2,[r5] @ (*right)->count < pivot
4 ldr r3,[r2,#wln_count]
5 cmp r3,r12
6 bge cmp
7 sub r5,r5,#4 @ decrement right
8 b loopb
9 cmp: cmp r4,r5 @ if(left <= right)

10 bgt finale
11 str r0,[r5],#-4 @ swap pointers and
12 str r2,[r4],#4 @ change indices
13 b loopa
14 finale: mov r0,r6 @ quicksort array from
15 mov r1,r5 @ first to current right
16 bl wl_quicksort
17 mov r0,r4 @ quicksort array from
18 mov r1,r7 @ current left to last)
19 bl wl_quicksort
20 ldmfd sp!,{r4-r7,pc}

Therac-25

The Therac-25 was a device designed for radiation treatment of cancer.

Although this machine was built with the goal of saving lives, between 1985 and
1986, three deaths and other injuries were attributed to the hardware and software
design of this machine.

Therac-25

The worst problems in the design and engineering of the machine were:

The code was not subjected to independent review.

The software design was not considered during the assessment of how the
machine could fail or malfunction.

The operator could ignore malfunctions and cause the machine to proceed with
treatment.

The hardware and software were designed separately and not tested as a
complete system until the unit was assembled at the hospitals where it was to be
used.

The design of the earlier Therac-6 and Therac-20 machines included hardware
interlocks which would ensure that the X-ray mode could not be activated unless
the tungsten radiation shield was in place. The hardware interlock was replaced
with a software interlock in the Therac-25.

Errors were displayed as numeric codes, and there was no indication of the
severity of the error condition.

Therac-25

Although the code was written in assembly language, that fact was not cited
as an important factor.

The fundamental problems were

poor software design,

over-confidence, and

re-use of code in an application for which it was not initially designed.

A proper design using established software design principles, including structured
programming and abstract data types would almost certainly have avoided these
fatalities.

	Introduction
	Image
	Word Frequency Counts
	Therac-25

